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BOUNDARY-LAYER STABILITY DIAGRAMS FOR ELECTRICALLY CONDUCTING
FLUIDS IN THE PRESENCE OF A MAGNETIC FIELD'

by VErNoN J. Rossow

SUMMARY

The effectiveness of a magnetic field in stabilizing
the laminar flow of an inevmpressible, electrically
conducting fluid is studied. The neutral stability
curves pertaining to a two-dimensional sinusoidal
disturbance are presented for flow over a semi-
infinite flat plate in the presence of either a coplanar
or transverse magnetic field and for channel flow in
the presence of a coplanar magnetic field. As is to
be erpected, the magnetic field stabilizes the flow
unless the velocity profile is distorted by the magnetic
Sleld to an inherently unstable shape. This oceurs
when a transverse magnetic field is fired relative to
a semi-infinite flat plate.

INTRODUCTION

Mere mention of the possibility of controlling
the motion of electrically conducting fluids with
s magnetic field stimulates one’s imagination to
conceive flow fields which may furnish certain
ideal characteristics.  All too often the configura-
tions are too complicated to be amenabl: to
analysis and one must be content with a greatly
simplified version of the original idea. A survey
of the literature shows that a number of basic
solutions are being accumulated. A large portion
of the effort is directed at the theoretical evalua-
tion of the effectiveness of a magnetic field in
stabilizing a given laminar flow so that transition
to turbulent flow is inhibited. Some of the
carliest work on problems of this type was carried
out by S. Chandrasekhar. He found that a
magnetic ficld would inhibit the onset of convee-
tion in a fluid heated from below (vef. 1), and
would impede the transition to turbulence of

1 Supersedes NACA Technical Note 4282 by Vernon J. Rossow, 1958,

fluid between rotating cyvlinders of nearly the
same diameter (ref. 2).  In a later paper, reference
3, it is found that alayer of fluid heated from bolow
and subject to rotation is, under certain condi-
tions, destabilized by application of a small
magnetic  field.  The motion is stabilized by
increasing the magnetic field strength beyond a
certain amount. A series of experiments con-
ducted by Y. Nakagawa (refs. 4, 5, and 6) on the
instability of a layer of mercury heated from
below and subjected to a magnetic field and
rotation confirmed these theoretical predictions
of Chandrasckhar.

The effect of a magnetic field on the stability
of the flow of an incompressible clectrically con-
ducting fluid in a two-dimensional channel has
been studied for a coplanar magnetic field by
Stuart (ref. 7) and for a transverse magnetic
field by Lock (ref. 8). The transverse magnetic
field is found to be the more effective in stabilizing
the flow field. The high degree of stabilization
brought about is attributed (to the order of
accuracy of the analysis) entirely to the change
in the velocity profile caused by the interaction
of the fluid and magnetic field. When the
magnetic-field lines are parallel to the stream
direction, the favorable effect on the stability of a
disturbance is brought about by the electromotive
resistance encountered when a fluid element leaves
its normal path of motion in an cffort to form a
turbulent eddy, thereby crossing magnetic lines
of force.

The effect of a coplanar magnetic field on the
stability of a laminar mixing region was studied
by Curle (ref. 95. The Reynolds numbers at
which a small disturbance becomes unstable are
generally quite small for this type flow field

1
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(generally less than 100) but increasz rapidly
with increasing magnetic parameter.  Complete
stabilization is predicted for a magnetic parameter
over 0.301.

An experimental example of flow instability
caused by a magnetic field is given by Lehnert in
reference 10. Tt is found that a shallow layer of
mercury over a copper disk with two concentrice
copper rings is destabilized by application of a
vertieal magnetie field.  The rotation of the mner
copper ring produces a shear layer in the mercury
which is intensified by the magnetie field to the
extent that an eddy-tyvpe flow results. It is
pointed out by Lehnert that a generalization con-
cerning the effect of a magnetie field on the flow
field cannot then be made, and each situation
must be studied to find out if the beginning of
amplification of a disturbance is actually delayed
to a higher Reynolds number by the magnetic
field.

The flow of an incompressible electrically con-
ducting fluid over a semi-infinite flat plate in the
presenee of a magnetie field perpendicular to the
surface of the plate was studied in reference 11,
The effeet of the magnetic field on the stability
of the flow has not as yvet been studied for the
case when the magnetie lines of force are perpen-
dicular to or alined with the stream divection. It
i the intent of this paper firstly to present an
analysis of the stabilizing effect brought about by
a coplanar magnetic field acting on an electrically
conducting fluid flowing over a semi-infinite flat
plate.  The analysis is restricted to infinitesimal
sinusoidal disturbances of the Tollmien-Schlichting
type. In the course of the investigation it is
necessary to evaluate a large portion of the nu-
merical work for the corresponding two-dimen-
sional channel problem. Since the method of
analyvsis 1s slightly different from that of reference
7, these results are presented. Secondly, the
effect of a transverse magnetie field is considered.
As was found for the channel (Lock, ref. 8), the
change in the critical Reynolds number for the
flat plate is controlled primarily by the change in
the velocity profile brought about by the inter-
action of the flud and magnetic field. The
velocity profile shapes which are considered are
taken from the two simplest cases analyzed in
reference 11, The first case assumes that the
{ransverse magnetic field is fixed relative to the

plate 2 and the second that it 1s fixed relative to
the flud far from the plate.

The method of analysis which is used is pat-
terned after the procedure developed and deseribed
by (', C. Lin in references 13, 14, and 15. A his-
tory of the development and of the various physiecal
problems which have been studied is given in a
monograph by Lin in reference 16, A briel out-
line of the method is given in the introduction to
the present analysis.  The neutral stability curves
are presented for several values of the magnetic
parameter.

SYMBOLS
« N -
3] unposcd magnetic induction
¢ wave speed of disturbanee
') Tietjen’s function (see eq. (19))
. 32 .
m magnetie parameler, R per unit
length Pl
P pressure

do, 1. inviscid perturbation amplitude func-
Gay - - - tions (see eq. (8))
R Reyvnolds number based on bound-

r
©

. 8l
ary-layer thickness, ~—=
14

R, Reynolds number based on distance
from leading edge of flat plate,
z*l7,

14
u x component of veloeity
i

v o

& velocity in the stream direction of
the low field to be perturbed

? y component of velocity

&y rectangular coordinates

< Yo Uy )1

@ wave number of disturbance

. %

) boundary-layer thickness, ¢ i

©
1

¢ (akt)r?

¥ perturbation stream function

@ amplitude function

2 Shorily after the appearance of the techmnical note version of the present
paper, s analysis carried out by Li, Michelson, and Rabinowicz (ref, 12)
came to the attention of the author. They obtained the stability boundaries
for the case in which the magnetic field is fixed relative to a semi-infinite
flat plate. ‘T'hese results are compared with those of the present paper,
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v kinematic viscosity
WY
n
€
) density of fluid
o electrical conductivity

viscous perturbation stream func-
tions (sce eq. (16))

X(m,Xm,}
Xy« v e

SUBSCRIPTS

- edge of boundary layer, or free
stream
0 critical laver where UV=c¢
o disturbance
SUPERSCRIPTS
- veetor
! derivative with respect to ¥
* dimensional quantities
ANALYSIS

The present state of stability theory requires
that a number of simplifications be made in the
analvsis so that the method can be applied to
physical situations without a prohibitive amount
of labor. The method developed by C. C. Lin
(refs. 13, 14, and 15) is a compromise hetween
accuracy and effort required to analyze a given
flow field. The present analysis is therefore
patterned after it.

RESUME OF STEPS IN ANALYSIS

The desired result is a stability diagram of
exeiting wave number a and Reynolds number R.
At the beginning, the undisturbed steady-state
solution to the magnetohydrodynamie flow prob-
lem being considered is assumed to be known.
This information together with the equations of
motion, the continuity equation, Maxwell’s equa-
tions, Ohm’s law for a moving fluid, the cleetro-
motive force relation, the wave nature of the dis-
turbance, plus various approximations go to make
up a complex fourth-order ordinary differential
equation for the amplitude function ¢. The
various steps will now be explained.  Figure 1
was designed to orient the reader in the subsequent
analysis which, in view of its well established
naturs, is discussed only briefly.

The flow field is at some time assumed to be a
steady two-dimensional stream of incompressible
electrically conducting fluid. A two-dimensional
infinitesimal sinusoidal disturbance of a given wave

number a is then impressed on the fluid to test for
the stability of the stream. A sinusoidal disturb-
ance is chosen beeause many disturbances which
are likely to occur in nature can be Fourier ana-
lvzed and thereby reduced to a sum of sinusoidal
disturbaneces.  The magnitude of the disturbance
is assumed to be vanishingly small or infinitesimal
so that the analysis may be simplified by retaining
only those terms which are linear in a disturbance
or perturbation quantity. The wave nature of
the disturbance is introduced by the disturbance
stream function

g ol rwqﬂl’,’."‘("—wl—m,*/)

where a* is the wave number, ¢* is the velocity of
the wave in the stream direetion, and ¢;* i1s the
rate of growth of the wave amplitude. The dis-
turbance velocities are then given by u*=o¢/oy*
and 2*=— (Q¢/dr*). The starred quantities have
physical dimensions, whereas the unstarred coun-
terparts have been made dimensionless by dividing
by the free-stream velocity 7. or by the bound-
ary-layer thickness § as the case may be. It is
assumed that the disturbance velocity and mag-
netie-field components are characterized by this
exponential and depend on it (o a first power.
The object of the analysis is to find the conditions
when the wave will just begin to grow ® (i.e., will
be neither damped nor amplified but neutral), the
factor ¢;* of the exponential is set equal to zero
and the exponential reduces to ¢/="¢"=<"9. This
function deseribes the propagation of the wave in
the stream direction for a given station £* as a
function of time. The velocity of propagation for
a given disturbance is independent of the distance
along and perpendicular to the plate. It remains
to find the circumstances under which the wave
amplitude neither grows nor diminishes but is
neutral. It is found that the neutral point of
wave growth occurs when the wave speed ¢* is
equal to the local veloeity {7 of the fluid. The
region in the fluid where this happens is referred
to as the “critical layer” and the distance from
the wall as y*.

In the actual flow problem one knows that the
disturbance may be of either the two- or three-
dimensional type. It has, however, been shown
by Squire (ref. 18) that if the flow field is unstable

3 The stability curves corresponding to a number of growth rates, ¢:>-0,

have been computed by 8. F. shen (ref. 17) for flat plate and channel flow
using an extension of Lin’s method.
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to a three-dimensional disturbance it will be un-
stable to a two-dimensional disturbance at a lower
Reynolds number.  The extension of this proof to
the type of magnetohydrodynamic problems being
considered here is made by Michael in reference
19. Only two-dimensional disturbances will then
be considered because they are the most unstable.

When the information just deseribed is intro-
duced into the equations relevant to the problem,
a complex ordinary fourth-order differential equa-
tion is obtained for the amplitude function ¢
(fig. 1). It is complex because imaginary quan-
tities are introduced by the exponential used to

‘NATIONAL AERONAUT.CS AND SPACE ADMINISTRATION

deserite the perturbations. The terms which
contairn products or squares of the disturbanee
quanti ies are discarded. Tt is also assumed that
the station in question is far enough downstream
so that the variables are not changing in the free-
stream direction.

Ever though a number of simplifying assump-
tions are made, the form of the differential
equation is such that a simple solution has not
vet been found. It is necessary then to find four
linearly independent solutions by reducing the
complete differential equation to two simpler
differenitial equations by a power series expansion

Complex fourth-order ordi

a(¥,u,c

£

nary differential equatiocn
or
,U,m8,R)

)O

1/R

(1/R
TR

(Discard terms involving visc

Complex second-order
differential equation -
inviscid functions:

o{y,a,c,U,md)

osity)

Complex fourth-order
differential equation -
viscous functions:

X[ (y-yo) (aR) Y25 Uot)

LI %s = aa | %4 = 2
-5 (0) [Viclates
/ - = F('/.) Yw(t‘)) =7
YUQS'(O) lbecause
RN R tends to
= Tietjen's function with y
/

ayR

P

®(0)

combinations for neutral
stability obtained from cornstants

8101 + a0z + azqs
with constants chosen so that
g (0) =o' (1) = O

in

|

Stable

md

Unstable

R

Fireure L—Block diagram of stabi ity unalysis.
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in 1/R and e=(1/af?)'# as indicated in figure 1.
The zero-order terms in /R are the only ones
retained.  The resulting differential equation is
sometimes referred to as the inviscid form of the
differential equation because all terms involving
viscosity have been dropped. Proceeding down
to the next step in figure 1, the first two linearly
independent solutions ¢, and ¢, are found by
introducing another series which consists of posi-
tive powers of the wave number « and whose
coefficients depend on the wave speed e and
velocity {7 in the flow field. Once again, only
the first few terms in « are retained.

The boxes on the right of figure 1 indicate that
the solution to the first-order term in the set of
differential equations which results from  the
expansion in e=(1/af)"* is the only one which is
found. As pointed out by Lin, higher order
functions could be found by quadratures but in
most cases sufficient accuracy is obtained by
considering only the first-order term. This dif-
ferential equation has four linearly independent
solutions which can be used. Two of these solu-
tions, x; and xp, are discarded because they are
too simple in form for curved velocity distribu-
tions. An examination of x, or ¢; shows that it
increases without limit with y and thereby violates
the boundary condition that disturbances must
die out as y approaches infinity. For this reason
it is not used in the problems treated in this
paper. The function ¢; is generally used in the
form known as Tietjen’s function (fig. 1).

The three remaining linearly independent solu-
tions are then combined in such a way that the
boundary conditions are satisfied. The dis-
turbance velocities will vanish at the wall and
edge of the boundary layer when

=011 A2¢2+ Azgs

with the constants a,, @, and a; chosen so that
e(0)=¢"(0)=¢'(1)=0

This is possible only for a certain combination
of « and R when the magnetic parameter msd,
velocity distribution {7, and wave speed ¢ have
been specified. The end result from several such
computations is a graph of the wave number «
versus the Reynolds number £ for various values
of the magnetic parameter mé. Since  these

-’

curves denote the values of « and I for neutral
stability of the wave, a combination of « and £,
which lies on the side of the curve denoted as
unstable, warns that the amplitude of the dis-
turbance will grow under those conditions. In
the stable region the wave is damped.

The number of approximations which are made
might cause one to doubt the accuracy of the end
results.  KEstimates made by Lin in reference 15
indicate that the stability curves should not be in
error by much more than a few pereent and are
therefore accurate enough for most engineering
purposcs.

The analysis of the problems being considered
in this paper is presented in the following sections.
Sinee the method is well defined in references
13, 14, and 15; only the essential parts of the
analysis are presented.

COPLANAR MAGNETIC FIELD

Differential equation. -The differential equa-
tion for the funetion ¢ will now be derived for the
magnetic-field lines alined with the stream diree-
tion. The result is general enough that it ean be
applied to the flow in channels and over flat
plates.  Maxwell’s equations for the incompres-
sible-flow problems being considered are

¥
Div =0

Div H—0
y o (1)
Curl H=4rj
>
vl T ()[I_
Curl £=—u o

J

> L]
where £, I1, j, and g are the electrie field intensity,
magnetic intensity, clectric current. density, and
magnetic permeability, respectively. Ohm’s law
for a moving fluid is

- d - ->
J=a (L4 U7X B) 2)
-> - >
where B=ulf and [V is the local velocity vector.
The equation of continuity is
Div {'=0 ()

The Navier-Stokes equation modified to include
the electromotive foree term (so-called Lorentz
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force) arising from the relative motion between
the fluid and magnetic field is

»aﬁ+<i7'- soad)l— L (G B+ grad p—vvil 7
or Tt gra( p] ) pg a p=v

)

where the excess charge density and applied
electric field are assumed to be zero.

The relation between the input wave number,
a of the disturbance and the Reynolds number,
R, of the flow at which the amplitude of the dis-
turbance neither increases nor decreases (neutral)
will be found by introducing the quantities,

u**[?‘F‘Ud*(y*) plarrr—cr) )
1*em ¥ () g = en0
By=B+by*el«t -0 (5)
B,=B(y*)ele -

p*:i)*+pd*(y*)6fa‘(r'—c't) J

where e*-=c¢.*+ie,*. When the disturbance is
classified as neutral (neither amplified nor damped)
e:* is zero. Since the problem will be to find
only the neutral disturbance curves, the quantity
e* will hereafter be used to denote only the real
part ¢,*, that is, the wave speed of the disturbance.
The quantity o* is the wave number of the dis-
turbance.

It will be assumed that:

1. The location of the instability is far enough
downstream of the entrance to the channel or
leading edge of the plate that the velocity normal
to the boundary is negligible in comparison with
the velocity parallel to the boundary.

2. The fluid is of uniform density and condue-
tivity, and the applied magnetic field, B, is uni-
form throughout the flow field.

3. The boundaries are perfect conduectors in
order to complete the circuit for electric currents
in the fluid.

4. Terms which contain products or squares
of the disturbance quantities are negligible.

5. The disturbances are neutrally stable at
values of the Reynolds number high enough so
that a series in (1/aR?)'” converges rapidly.

Following the method used by Stuart in refer-

ence 7, »quations (1) through (5) may be combined
and sinplified using the foregoing assumptions
to yield a complex ordinary differential equation
for the dimensionless amplitude function ¢.

(17 —e) (@' —akp) — @l +imbag

1

— (p’ rrs
el

— 2’0" +ayp) (6)

where n=of%/pl’,, R=6U7_/», and U denotes
the locil velocity divided by the velocity at the
edge of the boundary layer, I7_. The symbols
a and ¢ in equation (6) denote the dimensionless
form of the wave number o* and wave speed
¢*, respectively. The amplitude function ¢ is
a function of y=y*/8. The primes denote differ-
entiation with respect to the distance » normal
to the nearest bounding surface.  Hereafter, only
the diriensionless unstarred quantities will be
used in the analysis unless it is noted otherwise.
The boundary conditions are,

¢=¢'=0 aty=0

at center of channel, y=1
e=¢ =0 or
atl y= o for the flat plate

Four linearly independent solutions to equation (6)
will nov- be found by the technique explained in
references 13, 14, and 15, The first two solutions,
¢ and 2, will be derived from a series expansion
in 1/ and are designated as the inviscid solutions.
The twe remaining solutions ¢, and ¢, result from
# series expansion in e=(1/al)' and are called
the viseous solutions.

Inviscid solutions.—If the terms involving 1/aR
in equa ion (6) are assumed small, the remaining
terms constitute the differential equation which
er and ¢, must satisfy.

=)@ —atp) — U’ +imdap=10 @)

A soution to equation (7) is found by the

method of Heisenberg (see, e.g., ref. 16). It is
assumed that the solution is of the form
e=gotaq+talqtdlp+ ... (8)

When equation (8) is inserted into equation (7)
and the terms containing the same power of « are
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equated, the following set of linear ordinary

differential equations is found.

['I’
(/{,'—{—.—7(_ Go=0 (9a)
’" /.]/6
4 i, (11:_'[7i(¥ o (Oh)
Lo 06 5 Y
Oy '*“[7(: Gn :fi(l,l_;»'—[ . Gu-1s H Sy,
(9n)
. ) *y 1 Yy . )
et (L —(')[1# a-’[ T ‘[ (e dyay,
Jo J0

iy
|

Jo ([ —)
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The two linearly independent solutions of equation
(9a) are

qo, =l —¢ (10a)

tu ’/_’/

: . {108
o (L —¢)* )

o, = i —e }

The two inviscid solutions for the function ¢
may then be written as

. y 1 o
—(—e) { 11 o l:J” n .4({)2"(1 (" —eydyaly,
R o T ety I
2 —e)? s —e aliyalyy - e A (
ta t,’o (- .[u ( “ .j() ( *’(')h.]ﬂ UYL ] 1 | J
and
: Ny N T R I L ,
‘;’2(]/) (- (’{.’” o '___(.j;'+a ““ ‘['7(,):.]“ (l =) .’” (l '_77(,)2{/.’/15”]/‘_'(/.'11 1
u 1 o *ug 1 ‘
— im(Sa[.Jo i[;r”“rl'):_]n (l ~—(‘).]0 u ’,4,(.)2‘/!/?"/-Vf’/-]/l ; }%f e 2
where only linear terms in mé have been retained. o0y =—¢ 0
The integrals in equations (11) and (12) may , .
be changed to a more convenient form by the P17 ()
transformation employed by Lin in reference 15. . (0) =0 e {(13)
At the wall, =0, and at the edge of the boundary .
layer, y=1, the inviscid fTunctions and ther '(())__,I,
derivatives then become 2 ¢ )
(1)= t-—c tm ol 1—c)py-i- ]
[ wl—a"llg [Jile Pt e
, | [l —at My .. . o
o1 ):T:' l: 1 lﬁiia"*’i]i[.:,f S—rméal p ooty .)]
el ly—=(1—¢) | - R, — Ny b imdatgy— Ky pp— . . ) s (14)
: t—a?ll, e ‘ :
1 R T — oM N A
(1) =< = i1y Voo, —
el 14{ ——A el
—imdal K (4ot —p— .[} J

A14205 -
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wliere
!
p== 1 1 —edy (15n)
JO
1 1 LI o
p._,:—:.j“ ([‘,7(_),_,.’0 (I —e)dyaly, (15b)

L LN 1 N2
Py :.J l ,,,,(.)-.’ i['—r(',)‘;‘Jn T —e)dyalyaly,

0 0
(15¢)
'l 1 NI . 1
(1-‘%*‘.’0 (['7(.)3'.‘0 i *")Jw'('[":',.)2(/!l:;'l.’/2’]3/1
(15d)
!
I, ‘ (L —e)dy (15¢)
AL
L N y
II‘_,:J0 ((?ﬁ(',)i‘Jn (L —e)dydy, (15f)

L T 1
.\I;;—j‘l —e Ju, U ey}

. ' 1 o, N 1
A\:; ‘J” ([r_(.).j J“ ([ - () Jyg (,[’.;

Uy
J (T — eyl yadyaliy,
0
(1

It

&)

BE dyaly2li,

(15h)
' 1 .
= <t (151)
! n ([ _(')' "
5 A
y=c
=)
0 S Lo
Ficvre 2.—Path of integration for integrals in inviseid
solution.

The path of integration, according to reference
14, lies along the real  axis with an indentation
along a semicircular path under the singular point,
y=1Yo (l.c., where /=¢) as shown in figure 2.

Viscous solutions.—The two remaining inde-
pendent solutions, the so-called viscous solutions-
¢s and ¢, are found by introducing the small
parameter e=(1/aR)'® and the function x as

NATIONAL AERONAUTI S AND SPACE ADMINISTRATION

1=

(1) =X, (1)1 eX,y)(n) 4 Xy ()4 . ..
(16)
and

. N 4 )
Ume=ilen) 50 (en)*f- .

The subseript o indicates that the quantity is to
be evaluated at the point where U=e¢. I the
equations (16) are introduced into equation (6)
and the terms containing the same power of e are
equatec, the following set of ordinary differential
equations results,
7l "X - Xy =0 (17a)
2
7l '(;x:')’i"".X::;,:(‘rt')’x(i))""%‘ I—Y(VJIXEll))’f'l-"I‘SX((ln (17b)
ete.

The solutions to equation (17a) are the only
ones in this series which are found.  As pointed out
in the ntroduction to the analyvsis (wo of these
four linearly independent solutions are discarded
on the grounds that they are trivial. It is also
found that the function x; or ¢ increases with y
indefini ely and thereby violates the boundary
conditicn that the disturbance velocities must
die out at the edge of the houndary laver. The
form of the solution required is then

el0) _ o :
ol0) = Yol (2) (18)
where
=yl
T . 't w172 g g =372 =
([S’ s 111/3 3 (ls) (13
Py Ve —ge L2 A (19)

' IR 2
f‘:J E2 Ty | (m-w:l di

and 77, ) is a Hankel function of the first kind
and of crder 1/3. The funetion F(2) is sometimes
referred to as the Tietjen’s funcetion.  The tabu-
lated vilues of references 13 and 20 are plotted in
figure 3 The viscous solution is not modified by
the presence of the magnetie field to the order of
accuracs of the analyvsis,

The iviscid solutions, equations (13) and (14),
together with equation (18) make it possible to
find the c¢hange in the neutral disturbance curve
caused hy a coplanar magnetic field.
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Fiarre 3.—Ticetjen’s functions, F(2) =+
2=y (U7, aR)

F.(2)-F{F(2) where

Channel flow (parabolic velocity profile).—The
flow of a viscous fluid between parallel planes
(Poiscuille flow-—fig. 4) gives rise to a parabolic
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velocity profile if the station in question is not
near the entrance to the channel. The effect of a
coplanar magnetic field on the growth of a two-
dimensional disturbance has already been studied
by Stuart in reference 7. The difference between
the analysis carried out here and in reference 7
lies in the larger number of terms retained here for
the inviscid solution ¢, and in the form of equation
(22) which is used to find the proper a— 2 combina-
tion. The end results of the two analyses should,
however, be about the same. Since the integrals
(15) must be evaluated for a parabolic velocity
profile in order to make application to the flat-
plate flow field, only a small amount of additiona]
effort is required to find the neutral disturbance
curves for the channel.
The velocity distribution is writien as

(20)

The integrals (15) can be evaluated in closed form
for arbitrary values of the wave speed ¢.

U==2y—y

N S p=— (21a)
- I\ —
_t — - U — —— 9 o2 .
171 1—a® | 3a°—1 H—u)
. — — P (gﬁ‘l“ P IS L
Froure 4.—Channel flow with magnetic field alined with + e (3a*— 2a*—1) (21h)
the streamlines, )
"ma- .%a 1 8(1 8(14—6(12+‘§ 2Ne?
_ =T 203 A a2 S Al
Py= (3a?—2a°—1)+ \ ] at+ aa: 300
2(1‘34-3(12—1 211a® , 1—17a/4 [ 8(13‘) ) ]
s (1—3a4+""")In (1
60a l: 180 5 ( Sty - )in (v
14-2a®—3a? 2114 | 14-17a/4 ( . 8(12> ] ,
L ST T (143047 YIn (1—a (21
G0 (L7’ []80 T Jdatg )in (=) “

i(l

([:«:_71}”, 1+a>|: 31 +a)? —Dlin(14a) +f~

a— 1 ‘)a 1
+1>J{J‘““ L’( ) [‘2<1+a Ta
"a(z —5a°)

¢)+

a5y

16(1“ [— In (

where a?=1—¢, and Ly( ) is the dilogarithmic
integral. Numerical values for the relations (21)
for several values of the parameter ¢ are presented
in table I. The functions 7. are tabulated in
references 21 and 22, The remaining integrals in

()(l—rl) In(1—a)+ !.(aZ_{,O)iI

(]n“;’n) [In (1+a I +(In 2a)|In (l-a)]}

(‘ 1)1 1*">+ *—1)] (21d)

the group (15) are written and tabulated in refer-
enee 15.

It remains now to combine the invisceid and
viscous solutions so that the boundary conditions
at the wall and at the edge of the boundary layer
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TABLE L---COEFFICIENTS FOR INVISCID SOLU-
TIONS; PARABOLIC VELOCITY PROFILE (CO-
PLANAR MAGNETIC FIELI)

¢ P ! 1t & ‘ KE

0 0. 6667 0. 3977 0. 09281 ©
05 L6167 4101 - 08583 0. 6765
A . HH6T 4224 07900 . 6529
T L ol6eT . 4351 07247 L AG75
.2 667 80 06617 . T035
PL2b CAL6T A5 06010 . THRT
.3 . B66Y L ATH6 054248 8355
.35 CS16T 4905 . 04855 L9401
. S2667 1 L H062 - 04302 1. 0828
s L2167 . H230 08762 1. 2818

are satisfied. It is found that the wave number of
an antisymmetrie disturbance and the Revnolds
number of the flow field must be chosen so that

, () ‘ol ,
o - esllh) cea(l) (22)

B )n./ 0 o . ’ 1 4 V
Yogst ) ]/(,l:( ,(()J¢>_)(l)+c lr”l(l)]

With all of the individual functions known, an
iteration scheme is employed to find the correct
wave number and Reynolds number combination.
A graphical method was used to find the inter-
sectiont of the curves of the funetions on the left
and right sides of equation (22) for several values
of the parameter ¢, whereas a numerieal iteration
scheme was used in reference 15,

The neutral  disturbance curves for several
values of the magnetic paranmeter mé are shown in
figure 5(a).  Since the parameter mda was held

-

constant in the analvsiz of reference 7, a direet

L2p R

03 \
at o5 \\
o8 Stable Ref 15
{a) |
. . " . ; . J
¢] 20 40 60 80 100
3

(1) Channel flow; parabolic veloeity profile.
Fravre 5.~-Regions wherein an infinitesimal sinusoidal
disturbanee ix amplified or damped in the presence of a
coplanar magnetie field.

16 B

12
Ax1073
(b Flat plate; Blasius boundary-laver profile.

Fravre 5. Concluded.

comparison with the neutral stability curves of
that paper cannot be made. The eritieal Revnolds
numbers found by the two analyses will he com-
pared in the discussion.

Flat-plate velocity profile. ~When an incom-
pressible viscous {luid flows past a semi-infinite
flat pla ¢ of zero thickness, the veloeity profile ean
be predicted theoretically and is generally veferred
to as the Blasius profile (fig. 6). The nentral
stabilit;- curve in the nonmagnetic ease has been
computad i references 13, 14, and 15. The
effect of the magnetie field on these results will
now be found.

Froere € Flow over a semi-infinite flat plate when the
nrgnetie field is alined with the streamlines,

The i1tegrals (15a) through (15d), evaluated by
the approximate method suggested in reference
15, are abulated in table 1L for specific valies of
¢. The ceal and imaginary parts of K, are com-
puted by the relations given in reference 11 as

K, =— )+().1465+1.24571‘+1 04502

1
4770
+2.039¢+-4.078¢*+2.423¢%- . . .

DL 2 >( 0.8—c .
+§(\ +8 " \In . —{-(7r> (23
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rer

K, =—= (TZ)‘ (24)

The expression which determines the proper
values of wave number o« and the Reynolds
number R for the flat-plate problem is

N e tael
’ ’ 1 '
1o{ U7 Ol + a1} i) +an(1)] }

(25)

F(z)—=

The neutral stability curves for several values
of the magnetic parameter mé are shown In
figure 5(h).

TABLE II.—COEFFICIENTS FOR INVISCID SOLU-
TIONS; BLASIUS PROFILE (COPLANAR MAG-
NETIC FIELD)

c 21 P2 ! Ps . s
0 0. 7133 0. 3817 0. 1272 © ‘

.05 . 6633 L3941 . 1202 . B603
1 . 6133 . 4064 L1134 : . 8367
i .15 . 5633 . 4191 . 1068 , . 8512
.2 . h133 L4321 . 10053 . 5872
! .25 . 4633 455 . 095446 L6424
P L4133 L4597 . D886 L7192
i .35 . 3633 L4745 . 08261 . B248
i .4 L3133 . 4902 L 07739 . 9665
| .45 . 2633 . a070 L 07198 1. 1656

TRANSVERSE MAGNETIC FIELD

The change in the boundary-layer velocity
profile for flow over a flat plate in the presence
of a transverse magnetic fleld was found in
reference 11. It was found that the skin frie-
tion and heat transfer are reduced if the mag-
netic field is fixed relative to the plate (fig. 7(a)
and increased if it is fixed relative to the fluid
outside of the boundary layer (fig. 7(b)). The
possibility exists, however, that the magnetically
induced velocity profile may be more or less
stable to transition to turbulent flow. An esti-
mate of the change in the stability of an infini-
tesimal sinusoidal disturbance induced by the
transverse magnetic field will now be found.

The differential equation for the disturbance
stream function is found by the technique used
by Lock in reference 8 which is to combine
equations (1) through (5) and then simplify the

b lo] | |

e |lii_|_'__
| | LA IT

it

[ B B B T B B B

(o)

T e
— -
ket

}fr4’7’+ #| —"| |

{b)
(a) Fixed relative plate.
(b) Fixed relative fluid far from the plate.

Ficure 7. -Flow over a semi-infinite flat plate with a
transverse magnetic field.

result by applving the five assumptions outlined
in the analvsis of the coplanar field. The differ-
ential equation for the perturbation stream
function is then

(U'—c¢) (<p"—a2¢)—U”¢=m6 ¢’
1
+ion (¢ —2d%" +-ap) (26)

It is shown by Lock in reference 8 that the
forms of the inviscid and viscous solutions arc
not affected to the order of the analysis by the
additional magnetic term in equation (26). In
other words, the change in the velocity profile
caused by the transverse magnetic field dominates
the stabilizing action of the magnetic field. The
neutral stability curves for several values of the
magnetic parameter mr are found by the mothod
outlinad in the appendix of raference 15, The
inviseid solutions are found by using the numeri-
cal data in tables T and II of reference 11 to
determine the velocity profiles at maxr-=0.05 and
0.10. The numerical results for the integrals
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TABLE HI

COEFFICIENTS FOR INVISCID SOLUTIONS;

RELATIVE TO PLATE

TECHNICAL REPORT R -37 ~NATIONAL AERONAUT.CS AND SPACE ADMINISTRATION

F'RANSVERSE MAGNETIC FIELD FIXED

mr ‘ ¢ I, 1, M, Ny Ky, K, ; o ‘
: ' ; f
L0005 0 0. 6022 0. 2337 0. 07907 0.1700 — I 0 1. 8273 0
| .05 . 5372 . 2225 . 06916 . 1806 - 10. 87 —. 0310 1. 8284 . 0274
| 1 . 4772 . 2107 . 06052 . 1929 —5.327 —. 0338 1. 8302 . 0547
15 . 4221 . 1983 . 05310 . 2044 —3. 414 —. 0102 1. 8312 . 0820
.2 . 3721 . 1854 . 04682 . 2158 —2.394 L0397 1. 8303 . 1093
.25 L3271 L1718 . 04162 . 2266 —1.721 L1159 1. 8263 . 1366
3 . 2870 1576 03741 . 2385 —1. 209 L2199 1. 8172 . 1641
35 . 2520 . 1428 . 03409 . 2466 —. 7729 . 3553 1. 8009 . 1917
‘ 1 . 2220 L1274 03151 . 2472 —. 2095 . 5209 1. 7844 . 2107
‘ 15 . 1069 S1112 02956 . 2389 . 2253 . 7250 1. 7509 . 2477
10 0 L5733 . 2223 . 06975 1732 e 0 1. 6473 0
.05 . 5084 L2111 . 05984 . 1838 —12. 28 0914 1. 6498 L0303
.1 . 1495 . 1093 . 05120 . 1962 -6, 156 —. 1394 1. 6556 . 0606
.15 . 3951 . 1869 . 04378 . 2076 -4, 051 . 1456 1. 6625 . 0907
.2 . 3456 L1740 03750 . 2190 —2.939 - 1132 1. 6686 . 1207
.25 3012 . 1604 . 03230 . 2208 -2 228 -, 0447 1. 6724 . 1507
.3 . 2618 . 1462 . 02800 2417 -1.717 . 0580 1. 6719 . 1806
| .45 . 2274 L1314 02477 . 2408 - 1. 323 . 1950 1. 6657 . 2105
Co . 1980 L1160 . 02219 2504 | 1. 0126 . 3726 1. 6520 . 2408
T L1736 . 0998 . 02024 . 2421 - 7831 . 5959 1. 6310 L2718
| - _ ]
TABLE IV. -COEFFICIENTS FOR INVISCID SOLUTIONS; TRANSVERSE MAGNETIC FIELD FIXED
RELATIVE TO FLU!D
| |
mr ¢ I I, ‘ M, Ny K, K, [ 84 o ‘
0.05 0 | 0.6458 0. 2536 0. 09507 0. 1704 — o 0. 4537 2. 3245 0
.05 | L5753 . 2424 . 08516 L1810 —7.937 . 4621 2. 2862 . 0218
1L A099 . 2306 L 07652 L1934 —3. 699 . 4748 2. 2481 . 0438
15 L4494 . 2182 06910 . 2048 —2. 248 . 4936 2. 2101 . 0662
L2 L3940 . 2052 . 06282 . 2162 —1. 4584 . 5319 2. 1707 . 0841
25 L3435 1917 . 05762 . 2270 —. 9174 . 5874 2. 1293 J1124
S3 b L2081 L1775 . 05341 . 2389 . 4697 . 6642 2. 0856 . 1360
.35 . 2576 . 1627 . 05000 . 2470 -, 0392 . 7692 2. 0370 . 1603
4 . 2222 . 1472 . 04751 . 2476 4347 . 9107 1. 9826 . 1852
15 . 1917 L1310 . 04556 . 2393 1. 0287 1. 0983 1. 9219 . 2108
10 0 . 6585 . 2604 . 10067 L1725 — . 6430 2. 6073 0
.05 . 5768 . 2402 . 09076 . 1831 —6. 648 . 6606 2. 5390 . 0196
1 . 5202 L2374 . 08212 . 1954 -~ 2. 966 . 6869 24712 . 0395
.15 . 1586 . 2250 f . 07470 . 2068 ~ 1. 6996 . 7194 2. 4045 . 0600
.2 . 4019 . 2121 . 06842 . 2183 —1. 0201 7611 2. 3380 . 0812
.25 . 3503 . 1985 . 06322 . 2291 —. 5522 . 8189 2.2712 . 1028
.3 . 3036 . 1843 . 05901 . 2410 —. 1525 . 8923 2. 2029 . 1252
.35 . 2620 . 1695 . 05569 . 2491 . 2445 9911 2. 1320 . 1483
L4 . 2253 . 1541 05311 . 2497 . 7030 1. 1244 2. 0584 1721
.45 . 1937 . 1379 . 05116 2414 1.3022 | 13015 1. 9803 . 1968
; ! ‘
b i
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(15¢) through (15h) are tabulated in tables 111
and IV,

The real part of the integral (151) is evaluated
by expanding in a series about tha eritical point
y=1y, where U=c. The result which was used
in the computations for the transverse magnetic

field is

. 0.4 " 0.4y,
Ky=— o — g |
1 l/nm~4“‘?/0)([70)2 {7 I Yo
( “7// o “(II 3
+03‘LW1 ) (0.04—0.2y,)

(g gy
5(,%34(0064

g4 KA —0. 1651 0.4y0* )4 . . .
16 (1755 \ 3 it 0:4y.°)

0.1
)+(1 )

The imaginary part Kl; 1s evaluated by use of
equation (24). The veloeity {7 in the integrals
(15¢) through (15h), (24), and (27) is referred to
the velocity at the edge of the boundary laver at
the particular station being considered.  When
the magnetic field 1s fixed relative to the plate
the undisturbed stream velocity and the velocity
at the edge of the boundary layer are not the same.

The neutral disturbanee curves are shown in
figures 8(a) and 8(b).

1

[T ie
\‘] -

In ‘
L2V e

_I_

Lo
4mw(u(075wﬁ

\\fﬂ% order in mx

—_—

Unstable

=
Y

Pxi02

(a) Magnetic field fixed relative to plate.

Ficure 8.-—Regions wherein an infinitesimal disturbance
is amplified or damped for flow over a semi-infinite flat
plate in the prescnce of a transverse magnetic ficld.

1.6 -

L2}
a

8}
A

(b) ;

L ’ A e 1 A L " J

0 4 8 12 6 20

Rx1073
(b Magnetic field fixed relative to fluid far from the plate,

Fiaure 8.- -Coneluded.

DISCUSSION

The neuatral stability curves shown in figures 5
and 8 indieate that the presence of a magnetic
field may stabilize or destabilize the flow of an
incompressible, electrically condueting fluid. Tt
is seen from these results that the flow over a
flat plate is stabilized by either & coplanar mag-
netie fleld or by a transverse magnetic field fixed
relative 1o the fluid, but a transverse magnetic
field fixed relative to the plate is generally desta-
bilizing.  The portion near the top of the solid
mr=0.1 curve in figure 8(a) indicates an opposite
trendd for a small range in wave number. As
pointed out in the introduction, another example
of flow instability caused by a magnetic field is
presented by Lehnert in reference 10, Also
shown in figure 8(a) is the stability boundary for
mr=0.1 found by Li, Michelson, and Rabinowicz
(ref. 12). They used the same method of analyvsis
that was used in this paper, but the results differ
beeause in referenee 12 the velocity profile shapes
were found by using only the first-order term ¢ in
ma rather than the first- and second-order terms
that were used in the present analysis. The
difference between the dashed (first order in mur)
and the solid (second order in mr) curves in
figure 8(a) for mr=0.1 is caused by this difference
in the velocity profile shapes. The result pre-
sented in reference 12 for ma=0.2 is not shown in
figure 8(a) because the velocity profile as deter-

1 The numerical values for the second-order veloeity term were not pub-
lished at the time that the work of reference 12 was being carried out.
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mined to a first order in mu is not accurate enough
to vield reliable results in a stability analysis.
A given flow field will probably contain dis-
turbances covering a wide range of wave number
due to imperfections in the walls and entrance to
the flow field. A conservative value for the
critical Reynolds number is then the lowest value
at which it is first possible for any of the waves to
be amplified. The eritical Reynolds numbers for
the flow problems considered in references 7 and
8 and for the coplanar magnetic-field cases
studied in this paper are shown in figure 9 as a
function of the magnetic parameter mé. The

1 —— - - - - - r
Corgneel (transgerieg et M

©onnannei Lopiange,

Flgt plate

{teansyverse-tixed raative fiudl

Flot plare
{coplanar}

Slat plat [transverse -tixed relattve plote}
--2nd arger 10 mx
st order i mx ref 12

O o4 08 A2 e .20 .24

Critiea] Reynolds munber as a funetion of the
magnetic parameter,

Ficure 9.

results for the transverse magnetic field obtained
in reference 12 and in this paper are also shown in
figure 9 as a function of mr. Tt is seen that the
results of Stuart in reference 7 are in essential
agreement with the present analysis.  The differ-
ence between the results is attributable to the
smaller number of terms retained in the analysis
of reference 7 for the inviseid solution. As
mentioned previously, the difference between the
first- and second-order curves shown for the mag-
netic field fixed relative to a flat plate is caused
by the different number of terms in the series
used to compute the velocity profiles. As is to
be expected, the two curves merge at low values

of mz (mr<0.05) because the second-order term
(m2r2u,  becomes negligible there. The results
for a la minar mixing region obtained by N. Curle
in reference 9 are not shown in figure 9 because
the Rernolds numbers are too small for the scale
of the graph.

It is quite evident from figure 9 that a magnetic
field is more effective when applied to channel
flow than to flat-plate flow. In particular, the
transverse magnetic field is so effective in stabi-
lizing the flow in a channel that the curve is a
vertical line to the scale of the graph.

When the magnetie field is coplanar, the large
differenze in the shape of the eritical Reynolds
number curves for the channel and flat-plate flow
fields is attributable to the infinite extent of the
flow field above the flat plate. As is shown by
Lin in reference 13, the asymptotic form of the
disturbance stream function as the distance y*
approaches and exceeds the boundary-layer thick-
ness, 8, introduces additional terms in the equa-
tion determining the neutral stability curves.
This is obvious when equations (22) and (25) are
compar~d. These additional terms de-emphasize
the terins involving the maguetic parameter and
result i1 a much smaller stabilizing effect for the
flat pla-e than for the channel flow.

The magnetic parameter and the Reynolds
numbet for the flow over a flat plate at which an
infinites imal disturbance will grow (figs. 5(b) and
8) are based on the boundary-layer thickness é
taken * as 6/ 407 /vr*, where {70, ~0.999. The
distance along the plate from the leading edge is
then related to the boundary-layer thickness by
the relationship

e
'\‘C‘[‘)z‘

where, = U z*/v. Therefore,

6ma*

mé= .- -

A [l),r"
and

» -

R= 63/ 12+

It wus found in reference 11 that a magnetic
field porpendicular to a flat plate changes the
velocit:- profile in the boundary layer. Even a

5 Wgandurd texts on boundary-layer theory usuully define the thickness
us =5/ U fvz®, where U/Ue ~0.99. As explained in reference 15, more
accuraey it achieved by defining a thicker boundary layer to evaluate the
inviseid integrals.
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small magnetic field fixed relative to the plate will
cause an inflection point ® in the velocity profile
near the surface. As is shown in figures 8(a) and
9, this causes the flow to be less stable with o
magnetic field than in the nonmagnetic field case.
The results in figures 8(b) and 9 indicate that a
magnetic field fixed relative to the fluid far from
the plate changes the velocity profile to a shape
which is more stable. The results of reference 11
indicate that the skin friction and heat transfer
are reduced in the former and increased in the
latter case. Care must then be exercised if one
attempts to reduce either the skin friction or heat
transfer by imposing a magnetic field across (per-
pendicular to) the flow field and not in relative
motion with the plate, because the laminar flow
is destablized by this technique.  Likewise, the
increase in the skin frietion and heat transfer
brought about by a transverse magnetic field
sweeping past the plate at the velocity of the free
stream would eventually experience a moderate
compensating effect in the form of increased sta-
bility of the laminar stream.

The results of this paper, in conjunction with
that of reference 11, point out the fact that it is
not certain whether the skin friction and heat
transfer are lowered or raised by using a trans-
verse magnetic field to alter the flow over a flat
plate. The magnetic field alters the veloeity pro-
file and changes the rate of growth of small dis-
turbances so that the two effects tend to com-
pensate each other. Individual situations must
then be considered separately to determine whether
an advantage can be achieved.

CONCLUSIONS

The analysis carried out in this report for the
flow over a flat plate indicates the effect of a mag-
netic field on the stability of a disturbance of the
Tollmien-Schlichting type. In particular it is
found that:

1. The flow is stabilized by a coplanar magnetic
field. The increase in the eritical Reynolds num-
ber is small compared with the inerease achieved
in a channel with a coplanar or transverse mag-
netic field.

2. A transverse magnetic field fixed relative to
the flat plate changes the velocity profile to an

6 T1 is noted in figure 8(u) that the maximum value of the wave nuniber

first increases and then deereases with increasing mr. This is caused by
the rapid change in the curvature of the velocity profile with mz.

inherently unstable shape which lowers the critical
Reynolds number.

3. A transverse magnetic field fixed relative to
the fluid far from the plate changes the veloeity
profile in the boundary layer to a shape which is
more stable and thereby raises the eritical Rey-
nolds number.

AMmes REsearcH CENTER
NATIONAL AERONAUTICAL AND SPACE ADMINISTRATION
MovrrrTr Firwp, Cavtr, May 1, 1958
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